Objective

The objective of this exam is to evaluate and assess the skills, knowledge, and ability of a potential PhD candidate in design practices, processes, and applications. Successful students will be able to demonstrate understanding of the fundamental principles of design, communicate, describe, and assess designs through artifacts, and solve design problems applying appropriate tools and methods.

Instructions

- For this exam, two of the three questions provided should be completed.
- Each question has equal weight.
- This exam is open book, open notes, with the exception that solution manuals are not allowed.
- Cell phones and other electronic devices are not permitted in the exam room.
- The exam has a time limit of 2.0 hours.
- Work each problem on a separate sheet of paper.
- Only turn in the problems to be graded.
- To allow anonymity during the grading process, each student will be given a pseudo-random identifier and will place their identifier (not their name) on all answer sheets.
- A score of 70% or higher is considered a passing grade.

Exam Topics and Learning Objectives

A successful exam candidate should be able to:

1. Evaluate the quality of design methods, activities, and outcomes
2. Evaluate the quality of design artifacts
3. Demonstrate fluency in developing concepts to solve design challenges

4. Demonstrate effective decision making skills and techniques for selection of alternatives throughout the design process
5. Select and apply an appropriate design tool for a required design artifact
6. Articulate an appropriate design process for a given design product or challenge
7. Translate customer statements to market requirements and/or performance measures
8. Develop basic engineering models for mechanical systems and product designs
9. Perform engineering design of fasteners, springs, and gear systems

*BYU Undergraduate courses that cover many of these topics: ME EN 482, 472, 475, and 476.
*Reference Texts:
 Mattson and Sorensen, *Fundamentals of Product Development*
 Groover, *Fundamentals of Modern Manufacturing*
SAMPLE PROBLEMS

NOTE: THESE PROBLEMS ARE REPRESENTATIVE OF THE TYPE OF PROBLEM THAT MAY BE ON THE EXAM. THIS IS NOT A SAMPLE EXAM.

Problem 1:

You have been asked to design a toy suitable for distribution by humanitarian organizations to people around the world suffering the effects of war or natural disaster. You are given the following broad criteria for the toys:

- Dimensions should not exceed 8" x 8" x 4"
- Moving parts need to be securely attached and work properly
- Toys should not be linked to American culture
- Avoid military, religious, violent, or scary toys

a) Market Requirements.

i) Process for determining needs

Describe the process you would follow to understand the market wishes, constraints and needs. Be as specific as possible in your description of the process. Demonstrate that you understand effective methods to determine the needs for this particular product.

ii) Requirement hierarchy

Although you have not been able to completely follow the process in part i), you should still be able to determine some needs from your experience. Based on your experience and the broad criteria above, generate a requirements hierarchy for the toy you are designing. The requirement statements should be as comprehensive as possible within the time available for the problem. Requirement statements should be expressed in appropriate terms with relative importance of the different needs expressed.

iii) Process evaluation

Evaluate the quality of your requirements hierarchy. Your work was extremely limited due to time, so it is expected that it is imperfect. What are the strengths and weaknesses of your requirements hierarchy? List one or two improvements you would expect to result from following the process identified in part i).

b) Performance Measures.

i) Process for determining performance measures

Describe the process you would follow to determine appropriate performance measures, units, and ideal values for your requirements. Be as specific as possible in your description of the process. Demonstrate that you understand good methods to develop specifications from a requirements hierarchy.
ii) Creating specifications

For several of the requirements identified in the needs hierarchy, create product specifications related to the requirement. Each specification should include a performance measure, a unit, an ideal value, and an upper acceptable limit, lower acceptable limit, or both as appropriate for the performance measure. The specifications identified for each requirement should be comprehensive enough to ensure that the requirement will be met if the specifications are met.

iii) Process evaluation

Evaluate the quality of your specifications. What are the major strengths of your specification set? What are its major weaknesses? What is the most important thing you’d like to improve if you had the resources available to do so?

Problem 2:

You have been asked to design a toy suitable for distribution by humanitarian organizations to people around the world suffering the effects of war or natural disaster. You are given the following broad criteria for the toys:

- Dimensions should not exceed 8" x 8" x 4"
- Moving parts need to be securely attached and work properly
- Toys should not be linked to American culture.
- Avoid military, religious, violent, or scary toys

a) Concept Generation

i) Process for generating concepts

Describe the process you would follow to generate product concepts. Be as specific as possible in your description of the process for this particular toy. Demonstrate that with sufficient resources, you would be able to develop an excellent set of generated concepts. In describing your process, focus on this particular design, rather than a generic design problem.

ii) Initial concept set

Subject to the limitations of time and location for this exam, generate an initial concept set for the toys described in the problem statement. Your concept set should be demonstrated to be excellent, subject to the limitations of the exam.

iii) Process evaluation

Evaluate the quality of your initial concept set. Your work was extremely limited due to time, so it is expected that it is imperfect. What are the strengths and weaknesses of your concept set? What is the most important improvement you would like to make if you were to continue on this project?

b) Concept Selection
i) Preliminary concept selection

Based on a subset of your initial concept set, use the screening process to select a few concepts for further work. Describe the process you used to screen the concepts.

ii) Process evaluation

Evaluate the quality of your concept screening. Do you believe that you have identified excellent concepts for more work? Why or why not? How would you change things with more time to complete the screening process?

Problem 3:

You have been asked to design a new adult pogo stick for the weight-loss market. In contrast with existing designs, this pogo stick is aimed at overweight adults. A specification for the final product is that it is safe to use for an adult weighing 280 pounds. Design an appropriate spring for this application, given that the total spring travel needs to be at least 9 inches. The design should include information on both material and geometry for the spring. Be sure to consider the dynamics of the pogo stick in your design considerations. Show all work, and clearly state any assumptions made.

Note: the default type of spring for a pogo stick is a coil spring. However, you are free to choose some other type of spring, should you desire to do so.

Problem 6:

You have been asked to design a residential keyless locking system suitable for single family homes in Provo and similar cities (i.e., keyless entry into home).

a) Three stakeholders were interviewed regarding the prospect of a residential keyless locking system. Given their response (boxed below), describe the process you would follow to determine appropriate specifications from these statements. Be as specific as possible in your description of the process. Demonstrate that you understand good methods to develop specifications from stakeholder/customer statements.

b) Based on the stakeholder statements (boxed below), develop a set of specifications that would ensure the stakeholder statements are satisfied. Provide performance measures, ideal values, and acceptable limits.

c) Evaluate the quality of your specifications relative to the stakeholder statements. Provide an insightful discussion that considers these questions: What are the major strengths of your specification set? What are its major weaknesses? What is the most important thing you'd like to improve if you had
Problem 8:

You have been asked to design a device to launch snowballs (of 3 inch diameter). You are given the following broad criteria for the device:

• Dimensions should not exceed 24" x 24" x 24"
• Device should not require electricity to operate
• Device should be easily operated by able-bodied individuals age 11 and up
• Device itself should be safe to operate

a) Provide a brief*, but insightful, description of the design process steps that lead to the important activity of Concept Generation. Tailor this description to a new designer working on your snowball launcher design team.

b) Subject to the limitations of time and location for this exam, generate and quickly sketch an initial concept set for the device described in the problem statement. Describe the process used to generate these concepts. The description of the process should demonstrate your knowledge of good concept generation processes.

c) Evaluate the quality of your initial concept set. Provide insightful discussions that answer the following questions: What are the strengths and weaknesses of your concept set? What is the most important improvement you would like to
make if you were to continue on this project?

*probably not more than 8 minutes.

Problem 9:

You are designing a product that interfaces with another company's product where the output shaft of the other product is the input for your product. The input to your system is a shaft that produces 10 in-lb of torque at 1800 rpm (revolutions per minute). Your system needs to convert this to an output rotation of approximately 50 rpm.

a) Considering only the limited information above, what are some of the design options (e.g. spur gear train) for creating this device?

b) Design a two-stage compound gear train that accomplishes this objective. Sketch the gear train and state the resulting gear diameters and number of teeth for each gear. State any assumptions made.

c) With the given input torque and gear ratio, what is the maximum output torque you could expect at the output shaft? What contributes to making the output torque less than this theoretical maximum?

Problem 10:

You work for a manufacturing company. One of your manufacturing stations requires an operator to stand for long periods of time doing simple repetitive tasks on a horizontal workspace. Few operators find the workspace height optimal for low fatigue. In response, you design a workspace that can be easily adjusted in height between 30" and 42" by different operators.

a) Quickly generate and sketch several diverse (and reasonable) concepts for raising and lowering the workspace. Demonstrate creativity and make sketches clear enough to be understood by the person evaluating your test.

b) Thoughtfully construct a weighted decision matrix to rank your generated concepts. Be sure to choose reasonable criteria, weights, and concept ratings.

c) Insightfully describe common challenges, and any solutions, associated with the concept generation and evaluation methods you used.
Problem 11:

You are the chief design engineer for a start-up company that wants to enter the sunglasses market. Your company will design and sell the sunglasses, and chooses to not outsource any design/engineering activities.

a) Sketch and describe a customized development plan that can be used for this specific product.
b) List specific design activities for this specific product that you recommend be used in each part of the plan.
c) Choose one part of the plan where you feel the largest amount of design ambiguity exists. Describe how you would deal with this ambiguity.

Problem 12.

You are designing a test equipment cart that requires a suspension to absorb lateral loads. The equipment cart rolls on wheels as shown below. The suspension element should fit within the shaded area to the left of the cart. The suspension element should offer no resistance when the cart is in position A, and should resist with a force of $F = 1,000$ N when moved 10 cm to the left (position B).

![Diagram of the cart and suspension](image)

- d) Describe several different design options (e.g. helical coil spring) for the suspension.
- e) Discuss the tradeoffs of the options mentioned above.
- f) Select one of the methods and provide more information on the suspension design (e.g. dimensions and material properties of a helical coil spring). Describe the design tradeoffs in your design.