You are here

Brian D. Iverson

Brian D. Iverson joined the faculty at Brigham Young University in 2012. His current interests include heat and mass transfer involving high aspect ratio structures for use in sensors, energy and thermal management applications.  Prior to his current position, he worked as a senior member of the technical staff at Sandia National Laboratories. While there his research included thermal storage integration in trough solar-thermal power plants, supercritical CO2 Brayton cycles for solar, thermocline energy storage, flux sensors for closed-loop tracking, among others. He has analyzed transport and interfacial phenomena in thermal, energy and bio-systems and worked as a post-doctoral researcher at Purdue University. He completed his PhD in 2008 while investigating integrated micropumping techniques for electronics cooling and biodevices as a part of the Cooling Technologies Research Center also at Purdue. His micropumping work includes actuation techniques such as induction-type electrohydrodynamics and electroosmotic pumping. He obtained an MS degree in 2004 while studying wick structure performance and properties in flat heat pipes. He is also a graduate of Brigham Young University (BS 2002).

Professional Experience

Assistant Professor

Brigham Young University, 2012-present

Senior Member of the Technical Staff 

Sandia National Laboratories, ABQ, NM, 2009-2012

Post-Doctoral Researcher, Purdue University

NSF Cooling Technologies Research Center, 2009

Visiting Researcher

Research Triangle Institute International, 2007

 

Education

Ph.D. Mechanical Engineering 

Purdue University, 2008

Topic: Traveling-Wave Electrohydrodynamic Micropumping in a Temperature Gradient

M.S. Mechanical Engineering 

Purdue University, 2004

​Topic: Heat and Mass Transport in Heat Pipe Wick Structures

B.S. Mechanical Engineering

Brigham Young University, 2002

Magna Cum Laude

 

LinkedIn Profile

Google Scholar Profile

ORCiD ID 

 

Winter 2016ME EN 643 Convective Heat Transfer

Fall/Winter 2017-18: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2018: ME EN 340 Heat Transfer

Spring 2017: ME EN 340 Heat Transfer

Winter 2017ME EN 540 Intermediate Heat Transfer

Fall/Winter 2016-17: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2016: ME EN 340 Heat Transfer

Spring 2016: ME EN 340 Heat Transfer

Winter 2016: ME EN 643 Convective Heat Transfer

Fall/Winter 2015-16: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2015: ME EN 340 Heat Transfer

Spring 2015: ME EN 340 Heat Transfer

Winter 2015: ME EN 540 Intermediate Heat Transfer

Fall/Winter 2014-15: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2014: ME EN 340 Heat Transfer

Spring 2014: ME EN 340 Heat Transfer

Winter 2014: ME EN 643 Convective Heat Transfer

Fall 2013: ME EN 340 Heat Transfer

Winter 2013: ME EN 340 Heat Transfer

Current Students and Alumni (link)

 

External Student Advisement:

Marc Dunham, Stanford University, 2012-2013

Scott Flueckiger, Purdue University, 2011-2012

Brian Ehrhart, University of Colorado at Boulder, 2010-2011

Google Scholar Profile

ORCiD ID

Journal Publications

  1. Cowley, A., Maynes, D., Crockett, J., and Iverson, B. D., 2017, "Bubble nucleation in superhydrophobic microchannels due to subcritical heating," submitted August 2017.
  2. Ding, S., Das, S., Brownlee, B., Parate, K., Davis, T., Stromberg, L., Katz, J., He, Q., Iverson, B., and Claussen, J., 2017, "CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening," submitted May 2017.
  3. Ghosh, A., Johnson, J. E., Nuss, J. G., Stark, B. A., Hawkins, A. R., Tolley, L. T., Iverson, B. D., Tolley, H. D., and Lee, M. L., 2017, "Extending the upper temperature range of microchip gas chromatography using a heater/clamp assembly," Journal of Chromatography A, Vol. 1517, pp. 134-141. DOI: 10.1016/j.chroma.2017.08.036
  4. Powell, K. M., Rashid, K., Ellingwood, K., Tuttle, J., and Iverson, B. D., 2017, "Hybrid concentrated solar thermal power systems: a review," Renewable and Sustainable Energy Reviews, Vol. 80, pp. 215-237. DOI: 10.1016/j.rser.2017.05.067
  5. Stevens, K., Crockett, J., Maynes, R. D., and Iverson, B., 2017, "Two-phase flow pressure drop in superhydrophobic channels," International Journal of Heat and Mass Transfer, Vol. 110, pp. 515-522. DOI: 10.1016/j.ijheatmasstransfer.2017.03.055
  6. Brownlee, B. J., Marr, K. M., Claussen, J. C., and Iverson, B. D., 2017, "Improving sensitivity of electrochemical sensors with convective transport in free-standing, carbon nanotube structures," Sensors and Actuators B: Chemical, Vol. 246, pp. 20-28. DOI: 10.1016/j.snb.2017.02.037
  7. Boyer, N., Pei, L., Rowley, J., Syme, D., Liddiard, S., Abbott, J., Larsen, K., Liang, R., Iverson, B., Vanfleet, R., and Davis, R., 2017, "Microfabrication with smooth thin carbon nanotube composite sheets," Materials Research Express, Vol. 4, pp. 035032. DOI: 10.1088/2053-1591/aa55a4
  8. Blanc, M. J., Mulford, R. B., Jones, M. R., and Iverson, B. D., 2016, "Infrared visualization of the cavity effect using origami-inspired surfaces," Journal of Heat Transfer, Vol. 138, pp. 020901. DOI: 10.1115/1.4032229
  9. Mulford, R. B., Jones, M. R., and Iverson, B. D., 2016, "Dynamic control of radiative surface properties with origami-inspired design," Journal of Heat Transfer, Vol. 138, pp. 032701. DOI: 10.1115/1.4031749
  10. Marr, K. M., Chen, B., Mootz, E. J., Geder, J., Pruessner, M., Melde, B. J., Vanfleet, R. R., Medintz, I. L., Iverson, B. D., and Claussen, J. C., 2015, "High aspect ratio carbon nanotube membranes decorated with Pt nanoparticle urchins for small scale underwater vehicle propulsion via H2O2 decomposition," ACS Nano, Vol. 9, pp. 7791-7803. DOI: 10.1021/acsnano.5b02124
  11. Iverson, B. D., Bauer, S. J., and Flueckiger, S. M., 2014, "Thermocline bed properties for deformation analysis," Journal of Solar Energy Engineering, Vol. 136, pp. 041002. DOI: 10.1115/1.4027287
  12. Dunham, M. T. and Iverson, B. D., 2014, "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Vol. 30, pp. 758-770. DOI: 10.1016/j.rser.2013.11.010
  13. Flueckiger, S. M., Iverson, B. D., and Garimella, S. V., 2014, "Economic optimization of a concentrating solar power plant with molten-salt thermocline storage," Journal of Solar Energy Engineering, Vol. 136, pp. 011016. DOI: 10.1115/1.4025516
  14. Ho, C. K. and Iverson, B. D., 2014, "Review of high-temperature central receiver designs for concentrating solar power," Renewable & Sustainable Energy Reviews, Vol. 29, pp. 835-846. DOI: 10.1016/j.ser.2013.08.099
  15. Flueckiger, S. M., Iverson, B. D., Garimella, S. V., and Pacheco, J. E., 2014, "System-level simulation of a solar power tower plant with thermocline thermal energy storage," Applied Energy, Vol. 113, pp. 86-96. DOI: 10.1016/j.apenergy.2013.07.004
  16. Iverson, B. D., Conboy, T. M., Pasch, J. J., and Kruizenga, A. M., 2013, "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Vol. 111, pp. 957-970. DOI: 10.1016/j.apenergy.2013.06.020
  17. Iverson, B. D., Broome, S. T., Kruizenga, A. M., and Cordaro, J. G., 2012, "Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase," Solar Energy, Vol. 86, pp. 2897-2911. DOI: 10.1016/j.solener.2012.03.011
  18. Iverson, B. D., Blendell, J. E., and Garimella, S. V., 2010, "Note: Thermal analog to atomic force microscopy force-displacement measurements for nanoscale interfacial contact resistance," Review of Scientific Instruments, Vol. 81. DOI: 10.1063/1.3361157
  19. Iverson, B. D., Cremaschi, L., and Garimella, S. V., 2009, "Effects of discrete-electrode configuration on traveling-wave electrohydrodynamic pumping," Microfluidics and Nanofluidics, Vol. 6, pp. 221-230. DOI: 101007/s10404-008-0317-1
  20. Iverson, B. D. and Garimella, S. V., 2009, "Experimental characterization of induction electrohydrodynamics for integrated microchannel pumping," Journal of Micromechanics and Microengineering, Vol. 19. DOI: 10.1088/0960-1317-19-5-055015
  21. Icoz, K., Iverson, B. D., and Savran, C., 2008, "Noise analysis and sensitivity enhancement in immunomagnetic nanomechanical biosensors," Applied Physics Letters, Vol. 93. DOI: 10.1063/1.2980036
  22. Iverson, B. D. and Garimella, S. V., 2008, "Recent advances in microscale pumping technologies: A review and evaluation," Microfluidics and Nanofluidics, Vol. 5, pp. 145-174. DOI: 10.1007/s10404-008-0266-8
  23. Iverson, B. D., Davis, T. W., Garimella, S. V., North, M. T., and Kang, S. S., 2007, "Heat and mass transport in heat pipe wick structures," Journal of Thermophysics and Heat Transfer, Vol. 21, pp. 392-404. DOI: 10.251414/1.25809
  24. Iverson, B. D., Maynes, D., and Webb, B. W., 2004, "Thermally developing electroosmotic convection in rectangular microchannels with vanishing Debye-layer thickness," Journal of Thermophysics and Heat Transfer, Vol. 18, pp. 486-493. DOI: 10.2514/1.3769

 

Books

  1. Iverson, B. D., and Garimella, S. V., Integrated Micropumping: Traveling-wave electrohydrodynamics induced in a temperature gradient, Saarbrücken, LAP Lambert Academic Publishing, 2010.

 

Conference Papers

  1. Cowley, A., Maynes, D., Crockett, J., and Iverson, B., 2017, "Sub-boiling nucleation in superhydrophobic microchannels," ASTFE Thermal and Fluid Engineering Conference, April 2-5, 2017, Las Vegas, NV.
  2. Blanc, M. J., Mulford, R. B., Jones, M. R., and Iverson, B. D., 2015, "Visualization of the cavity effect present for origami-inspired surfaces with IR imaging," Heat Transfer Gallery, ASTFE Thermal and Fluids Engineering Summer Conference, August 15-20, 2015, New York, NY. 
  3. Mulford, R. B., Jones, M. R., and Iverson, B. D., 2015, "Net radiative heat exchange of an origami-inspired, variable emissivity surface," ASTFE Thermal and Fluids Engineering Summer Conference, August 9-12, 2015, New York, NY.
  4. Mulford, R. B., Christensen, L. M., Jones, M. R., and Iverson, B. D., “Dynamic control of radiative surface properties with origami-inspired design,” ASME International Mechanical Engineering Congress and Exposition, Montreal, Canada, November 14-20, 2014.
  5. Flueckiger, S. M., Iverson, B. D., and Garimella, S. G., “Simulation of a concentrating solar power plant with molten-salt thermocline storage for optimized annual performance,” Energy Sustainability, Minneapolis, MN, July 14-19, 2013.
  6. Ho, C. K. and Iverson, B. D., 2012, "Review of central receiver designs for high-temperature power cycles," SolarPACES, September 11-14, 2012, Marrakech, Morocco.
  7. Iverson, B. D., Cordaro, J. G., and Kruizenga, A. M., 2011, "Thermal property testing of nitrate thermal storage salts in the solid-phase," ASME Energy Sustainability, August 7-10, 2011, Washington DC, USA.
  8. Iverson, B. D., Flueckiger, S. M., and Ehrhart, B. D., 2011, "Trough heat collection element deformation and solar intercept impact," SolarPACES, September 20-23, 2011, Granada, Spain.
  9. Andraka, C. E., Yellowhair, J., and Iverson, B. D., 2010, "A parametric study of the impact of various error contributions on the flux distribution of a solar dish concentrator," ASME Energy Sustainability, May 17-22, 2010, Phoenix, AZ, USA.
  10. Gary, J. A., Ho, C. K., Mancini, T. R., Kolb, G. J., Siegel, N. P., and Iverson, B. D., 2010, "Development of a power tower technology roadmap for DOE," SolarPACES, September 21-24, 2010, Perpignan, France.
  11. Iverson, B. D., Andraka, C. E., Yellowhair, J., and Ho, C. K., 2010, "Optical error impacts on flux distribution for a dish concentrator using probabilistic modeling," SolarPACES, September 21-24, 2010, Perpignan, France.
  12. Iverson, B. D., Broome, S. T., and Siegel, N. P., 2010, "Temperature dependent mechanical property testing of nitrate thermal storage salts," SolarPACES, September 21-24, 2010, Perpignan, France.
  13. Kolb, G. J., Ho, C., Iverson, B. D., Moss, T. A., and Siegel, N. P., 2010, "Freeze-thaw tests of trough receivers employing a molten salt working fluid," ASME Energy Sustainability, May 17-22, 2010, Phoenix, AZ.
  14. Iverson, B. D. and Garimella, S. V., 2008, "Performance characterization of a traveling-wave electrohydrodynamic micropump," ASME International Mechanical Engineering Congress and Exposition October 31 - November 6, 2008, Boston, MA, pp. 959-963.
  15. Cremaschi, L., Iverson, B. D., and Garimella, S. V., 2006, "Enhanced electrohydrodynamic pumping at the microscale," ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2006, Chicago, IL.
  16. Acikalin, T., Iverson, B. D., Garimella, S. V., Raman, A., and Petroski, J., 2004, "Numerical investigation of the flow and heat transfer due to a miniature piezoelectric fan," ASME International Mechanical Engineering Congress and Exposition November 13-19, 2004, Anaheim, CA, pp. 29-37.
  17. Iverson, B. D. and Garimella, S. V., 2004, "Experimental measurements of heat and mass transport in heat pipe wicks," ASME Heat Transfer/Fluids Engineering Summer Conference, July 11-15, 2004, Charlotte, NC, United states, pp. 209-217.

 

Brian Iverson utilizes heat transfer and thermodynamic principles to address needs related to power systems, sensing, thermal management and microfluidics.  His research begins at the nanometer scale with high-surface area to volume ratio structures that can be applied to industrial-sized components and bridge the gap between lab-scale devices and real-world applications.  Examples include:

  • High aspect ratio structures for control of heat and mass transfer
  • Enhanced convective transport
  • Microfabrication of sensors and actuators
  • Thermal energy storage
  • Absorptive surfaces for solar energy collection
  • Power systems for renewable energy


See more information at fluxlab.byu.edu

 

Carbon nanotube flow sensors for glucose detection and hydrogen peroxide splitting

 

Micro gas chromatography using thermal gradient control by exploiting nanoporous isolation layers

Very high aspect ratio micro and nano structures for heat and mass transfer enhancement

 

Origami-inspired thermal control mechanisms

 

Two-phase flows on superhydrophobic surfaces

 

Brian D. Iverson joined the faculty at Brigham Young University in 2012. His current interests include heat and mass transfer involving high aspect ratio structures for use in sensors, energy and thermal management applications.  Prior to his current position, he worked as a senior member of the technical staff at Sandia National Laboratories. While there his research included thermal storage integration in trough solar-thermal power plants, supercritical CO2 Brayton cycles for solar, thermocline energy storage, flux sensors for closed-loop tracking, among others. He has analyzed transport and interfacial phenomena in thermal, energy and bio-systems and worked as a post-doctoral researcher at Purdue University. He completed his PhD in 2008 while investigating integrated micropumping techniques for electronics cooling and biodevices as a part of the Cooling Technologies Research Center also at Purdue. His micropumping work includes actuation techniques such as induction-type electrohydrodynamics and electroosmotic pumping. He obtained an MS degree in 2004 while studying wick structure performance and properties in flat heat pipes. He is also a graduate of Brigham Young University (BS 2002).

Professional Experience

Assistant Professor

Brigham Young University, 2012-present

Senior Member of the Technical Staff 

Sandia National Laboratories, ABQ, NM, 2009-2012

Post-Doctoral Researcher, Purdue University

NSF Cooling Technologies Research Center, 2009

Visiting Researcher

Research Triangle Institute International, 2007

 

Education

Ph.D. Mechanical Engineering 

Purdue University, 2008

Topic: Traveling-Wave Electrohydrodynamic Micropumping in a Temperature Gradient

M.S. Mechanical Engineering 

Purdue University, 2004

​Topic: Heat and Mass Transport in Heat Pipe Wick Structures

B.S. Mechanical Engineering

Brigham Young University, 2002

Magna Cum Laude

 

LinkedIn Profile

Google Scholar Profile

ORCiD ID 

 

Winter 2016ME EN 643 Convective Heat Transfer

Fall/Winter 2017-18: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2018: ME EN 340 Heat Transfer

Spring 2017: ME EN 340 Heat Transfer

Winter 2017ME EN 540 Intermediate Heat Transfer

Fall/Winter 2016-17: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2016: ME EN 340 Heat Transfer

Spring 2016: ME EN 340 Heat Transfer

Winter 2016: ME EN 643 Convective Heat Transfer

Fall/Winter 2015-16: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2015: ME EN 340 Heat Transfer

Spring 2015: ME EN 340 Heat Transfer

Winter 2015: ME EN 540 Intermediate Heat Transfer

Fall/Winter 2014-15: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2014: ME EN 340 Heat Transfer

Spring 2014: ME EN 340 Heat Transfer

Winter 2014: ME EN 643 Convective Heat Transfer

Fall 2013: ME EN 340 Heat Transfer

Winter 2013: ME EN 340 Heat Transfer

Current Students and Alumni (link)

 

External Student Advisement:

Marc Dunham, Stanford University, 2012-2013

Scott Flueckiger, Purdue University, 2011-2012

Brian Ehrhart, University of Colorado at Boulder, 2010-2011

Google Scholar Profile

ORCiD ID

Journal Publications

  1. Cowley, A., Maynes, D., Crockett, J., and Iverson, B. D., 2017, "Bubble nucleation in superhydrophobic microchannels due to subcritical heating," submitted August 2017.
  2. Ding, S., Das, S., Brownlee, B., Parate, K., Davis, T., Stromberg, L., Katz, J., He, Q., Iverson, B., and Claussen, J., 2017, "CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening," submitted May 2017.
  3. Ghosh, A., Johnson, J. E., Nuss, J. G., Stark, B. A., Hawkins, A. R., Tolley, L. T., Iverson, B. D., Tolley, H. D., and Lee, M. L., 2017, "Extending the upper temperature range of microchip gas chromatography using a heater/clamp assembly," Journal of Chromatography A, Vol. 1517, pp. 134-141. DOI: 10.1016/j.chroma.2017.08.036
  4. Powell, K. M., Rashid, K., Ellingwood, K., Tuttle, J., and Iverson, B. D., 2017, "Hybrid concentrated solar thermal power systems: a review," Renewable and Sustainable Energy Reviews, Vol. 80, pp. 215-237. DOI: 10.1016/j.rser.2017.05.067
  5. Stevens, K., Crockett, J., Maynes, R. D., and Iverson, B., 2017, "Two-phase flow pressure drop in superhydrophobic channels," International Journal of Heat and Mass Transfer, Vol. 110, pp. 515-522. DOI: 10.1016/j.ijheatmasstransfer.2017.03.055
  6. Brownlee, B. J., Marr, K. M., Claussen, J. C., and Iverson, B. D., 2017, "Improving sensitivity of electrochemical sensors with convective transport in free-standing, carbon nanotube structures," Sensors and Actuators B: Chemical, Vol. 246, pp. 20-28. DOI: 10.1016/j.snb.2017.02.037
  7. Boyer, N., Pei, L., Rowley, J., Syme, D., Liddiard, S., Abbott, J., Larsen, K., Liang, R., Iverson, B., Vanfleet, R., and Davis, R., 2017, "Microfabrication with smooth thin carbon nanotube composite sheets," Materials Research Express, Vol. 4, pp. 035032. DOI: 10.1088/2053-1591/aa55a4
  8. Blanc, M. J., Mulford, R. B., Jones, M. R., and Iverson, B. D., 2016, "Infrared visualization of the cavity effect using origami-inspired surfaces," Journal of Heat Transfer, Vol. 138, pp. 020901. DOI: 10.1115/1.4032229
  9. Mulford, R. B., Jones, M. R., and Iverson, B. D., 2016, "Dynamic control of radiative surface properties with origami-inspired design," Journal of Heat Transfer, Vol. 138, pp. 032701. DOI: 10.1115/1.4031749
  10. Marr, K. M., Chen, B., Mootz, E. J., Geder, J., Pruessner, M., Melde, B. J., Vanfleet, R. R., Medintz, I. L., Iverson, B. D., and Claussen, J. C., 2015, "High aspect ratio carbon nanotube membranes decorated with Pt nanoparticle urchins for small scale underwater vehicle propulsion via H2O2 decomposition," ACS Nano, Vol. 9, pp. 7791-7803. DOI: 10.1021/acsnano.5b02124
  11. Iverson, B. D., Bauer, S. J., and Flueckiger, S. M., 2014, "Thermocline bed properties for deformation analysis," Journal of Solar Energy Engineering, Vol. 136, pp. 041002. DOI: 10.1115/1.4027287
  12. Dunham, M. T. and Iverson, B. D., 2014, "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Vol. 30, pp. 758-770. DOI: 10.1016/j.rser.2013.11.010
  13. Flueckiger, S. M., Iverson, B. D., and Garimella, S. V., 2014, "Economic optimization of a concentrating solar power plant with molten-salt thermocline storage," Journal of Solar Energy Engineering, Vol. 136, pp. 011016. DOI: 10.1115/1.4025516
  14. Ho, C. K. and Iverson, B. D., 2014, "Review of high-temperature central receiver designs for concentrating solar power," Renewable & Sustainable Energy Reviews, Vol. 29, pp. 835-846. DOI: 10.1016/j.ser.2013.08.099
  15. Flueckiger, S. M., Iverson, B. D., Garimella, S. V., and Pacheco, J. E., 2014, "System-level simulation of a solar power tower plant with thermocline thermal energy storage," Applied Energy, Vol. 113, pp. 86-96. DOI: 10.1016/j.apenergy.2013.07.004
  16. Iverson, B. D., Conboy, T. M., Pasch, J. J., and Kruizenga, A. M., 2013, "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Vol. 111, pp. 957-970. DOI: 10.1016/j.apenergy.2013.06.020
  17. Iverson, B. D., Broome, S. T., Kruizenga, A. M., and Cordaro, J. G., 2012, "Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase," Solar Energy, Vol. 86, pp. 2897-2911. DOI: 10.1016/j.solener.2012.03.011
  18. Iverson, B. D., Blendell, J. E., and Garimella, S. V., 2010, "Note: Thermal analog to atomic force microscopy force-displacement measurements for nanoscale interfacial contact resistance," Review of Scientific Instruments, Vol. 81. DOI: 10.1063/1.3361157
  19. Iverson, B. D., Cremaschi, L., and Garimella, S. V., 2009, "Effects of discrete-electrode configuration on traveling-wave electrohydrodynamic pumping," Microfluidics and Nanofluidics, Vol. 6, pp. 221-230. DOI: 101007/s10404-008-0317-1
  20. Iverson, B. D. and Garimella, S. V., 2009, "Experimental characterization of induction electrohydrodynamics for integrated microchannel pumping," Journal of Micromechanics and Microengineering, Vol. 19. DOI: 10.1088/0960-1317-19-5-055015
  21. Icoz, K., Iverson, B. D., and Savran, C., 2008, "Noise analysis and sensitivity enhancement in immunomagnetic nanomechanical biosensors," Applied Physics Letters, Vol. 93. DOI: 10.1063/1.2980036
  22. Iverson, B. D. and Garimella, S. V., 2008, "Recent advances in microscale pumping technologies: A review and evaluation," Microfluidics and Nanofluidics, Vol. 5, pp. 145-174. DOI: 10.1007/s10404-008-0266-8
  23. Iverson, B. D., Davis, T. W., Garimella, S. V., North, M. T., and Kang, S. S., 2007, "Heat and mass transport in heat pipe wick structures," Journal of Thermophysics and Heat Transfer, Vol. 21, pp. 392-404. DOI: 10.251414/1.25809
  24. Iverson, B. D., Maynes, D., and Webb, B. W., 2004, "Thermally developing electroosmotic convection in rectangular microchannels with vanishing Debye-layer thickness," Journal of Thermophysics and Heat Transfer, Vol. 18, pp. 486-493. DOI: 10.2514/1.3769

 

Books

  1. Iverson, B. D., and Garimella, S. V., Integrated Micropumping: Traveling-wave electrohydrodynamics induced in a temperature gradient, Saarbrücken, LAP Lambert Academic Publishing, 2010.

 

Conference Papers

  1. Cowley, A., Maynes, D., Crockett, J., and Iverson, B., 2017, "Sub-boiling nucleation in superhydrophobic microchannels," ASTFE Thermal and Fluid Engineering Conference, April 2-5, 2017, Las Vegas, NV.
  2. Blanc, M. J., Mulford, R. B., Jones, M. R., and Iverson, B. D., 2015, "Visualization of the cavity effect present for origami-inspired surfaces with IR imaging," Heat Transfer Gallery, ASTFE Thermal and Fluids Engineering Summer Conference, August 15-20, 2015, New York, NY. 
  3. Mulford, R. B., Jones, M. R., and Iverson, B. D., 2015, "Net radiative heat exchange of an origami-inspired, variable emissivity surface," ASTFE Thermal and Fluids Engineering Summer Conference, August 9-12, 2015, New York, NY.
  4. Mulford, R. B., Christensen, L. M., Jones, M. R., and Iverson, B. D., “Dynamic control of radiative surface properties with origami-inspired design,” ASME International Mechanical Engineering Congress and Exposition, Montreal, Canada, November 14-20, 2014.
  5. Flueckiger, S. M., Iverson, B. D., and Garimella, S. G., “Simulation of a concentrating solar power plant with molten-salt thermocline storage for optimized annual performance,” Energy Sustainability, Minneapolis, MN, July 14-19, 2013.
  6. Ho, C. K. and Iverson, B. D., 2012, "Review of central receiver designs for high-temperature power cycles," SolarPACES, September 11-14, 2012, Marrakech, Morocco.
  7. Iverson, B. D., Cordaro, J. G., and Kruizenga, A. M., 2011, "Thermal property testing of nitrate thermal storage salts in the solid-phase," ASME Energy Sustainability, August 7-10, 2011, Washington DC, USA.
  8. Iverson, B. D., Flueckiger, S. M., and Ehrhart, B. D., 2011, "Trough heat collection element deformation and solar intercept impact," SolarPACES, September 20-23, 2011, Granada, Spain.
  9. Andraka, C. E., Yellowhair, J., and Iverson, B. D., 2010, "A parametric study of the impact of various error contributions on the flux distribution of a solar dish concentrator," ASME Energy Sustainability, May 17-22, 2010, Phoenix, AZ, USA.
  10. Gary, J. A., Ho, C. K., Mancini, T. R., Kolb, G. J., Siegel, N. P., and Iverson, B. D., 2010, "Development of a power tower technology roadmap for DOE," SolarPACES, September 21-24, 2010, Perpignan, France.
  11. Iverson, B. D., Andraka, C. E., Yellowhair, J., and Ho, C. K., 2010, "Optical error impacts on flux distribution for a dish concentrator using probabilistic modeling," SolarPACES, September 21-24, 2010, Perpignan, France.
  12. Iverson, B. D., Broome, S. T., and Siegel, N. P., 2010, "Temperature dependent mechanical property testing of nitrate thermal storage salts," SolarPACES, September 21-24, 2010, Perpignan, France.
  13. Kolb, G. J., Ho, C., Iverson, B. D., Moss, T. A., and Siegel, N. P., 2010, "Freeze-thaw tests of trough receivers employing a molten salt working fluid," ASME Energy Sustainability, May 17-22, 2010, Phoenix, AZ.
  14. Iverson, B. D. and Garimella, S. V., 2008, "Performance characterization of a traveling-wave electrohydrodynamic micropump," ASME International Mechanical Engineering Congress and Exposition October 31 - November 6, 2008, Boston, MA, pp. 959-963.
  15. Cremaschi, L., Iverson, B. D., and Garimella, S. V., 2006, "Enhanced electrohydrodynamic pumping at the microscale," ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2006, Chicago, IL.
  16. Acikalin, T., Iverson, B. D., Garimella, S. V., Raman, A., and Petroski, J., 2004, "Numerical investigation of the flow and heat transfer due to a miniature piezoelectric fan," ASME International Mechanical Engineering Congress and Exposition November 13-19, 2004, Anaheim, CA, pp. 29-37.
  17. Iverson, B. D. and Garimella, S. V., 2004, "Experimental measurements of heat and mass transport in heat pipe wicks," ASME Heat Transfer/Fluids Engineering Summer Conference, July 11-15, 2004, Charlotte, NC, United states, pp. 209-217.

 

Brian Iverson utilizes heat transfer and thermodynamic principles to address needs related to power systems, sensing, thermal management and microfluidics.  His research begins at the nanometer scale with high-surface area to volume ratio structures that can be applied to industrial-sized components and bridge the gap between lab-scale devices and real-world applications.  Examples include:

  • High aspect ratio structures for control of heat and mass transfer
  • Enhanced convective transport
  • Microfabrication of sensors and actuators
  • Thermal energy storage
  • Absorptive surfaces for solar energy collection
  • Power systems for renewable energy


See more information at fluxlab.byu.edu

 

Carbon nanotube flow sensors for glucose detection and hydrogen peroxide splitting

 

Micro gas chromatography using thermal gradient control by exploiting nanoporous isolation layers

Very high aspect ratio micro and nano structures for heat and mass transfer enhancement

 

Origami-inspired thermal control mechanisms

 

Two-phase flows on superhydrophobic surfaces

 

Brian D. Iverson joined the faculty at Brigham Young University in 2012. His current interests include heat and mass transfer involving high aspect ratio structures for use in sensors, energy and thermal management applications.  Prior to his current position, he worked as a senior member of the technical staff at Sandia National Laboratories. While there his research included thermal storage integration in trough solar-thermal power plants, supercritical CO2 Brayton cycles for solar, thermocline energy storage, flux sensors for closed-loop tracking, among others. He has analyzed transport and interfacial phenomena in thermal, energy and bio-systems and worked as a post-doctoral researcher at Purdue University. He completed his PhD in 2008 while investigating integrated micropumping techniques for electronics cooling and biodevices as a part of the Cooling Technologies Research Center also at Purdue. His micropumping work includes actuation techniques such as induction-type electrohydrodynamics and electroosmotic pumping. He obtained an MS degree in 2004 while studying wick structure performance and properties in flat heat pipes. He is also a graduate of Brigham Young University (BS 2002).

Professional Experience

Assistant Professor

Brigham Young University, 2012-present

Senior Member of the Technical Staff 

Sandia National Laboratories, ABQ, NM, 2009-2012

Post-Doctoral Researcher, Purdue University

NSF Cooling Technologies Research Center, 2009

Visiting Researcher

Research Triangle Institute International, 2007

 

Education

Ph.D. Mechanical Engineering 

Purdue University, 2008

Topic: Traveling-Wave Electrohydrodynamic Micropumping in a Temperature Gradient

M.S. Mechanical Engineering 

Purdue University, 2004

​Topic: Heat and Mass Transport in Heat Pipe Wick Structures

B.S. Mechanical Engineering

Brigham Young University, 2002

Magna Cum Laude

 

LinkedIn Profile

Google Scholar Profile

ORCiD ID 

 

Winter 2016ME EN 643 Convective Heat Transfer

Fall/Winter 2017-18: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2018: ME EN 340 Heat Transfer

Spring 2017: ME EN 340 Heat Transfer

Winter 2017ME EN 540 Intermediate Heat Transfer

Fall/Winter 2016-17: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2016: ME EN 340 Heat Transfer

Spring 2016: ME EN 340 Heat Transfer

Winter 2016: ME EN 643 Convective Heat Transfer

Fall/Winter 2015-16: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2015: ME EN 340 Heat Transfer

Spring 2015: ME EN 340 Heat Transfer

Winter 2015: ME EN 540 Intermediate Heat Transfer

Fall/Winter 2014-15: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2014: ME EN 340 Heat Transfer

Spring 2014: ME EN 340 Heat Transfer

Winter 2014: ME EN 643 Convective Heat Transfer

Fall 2013: ME EN 340 Heat Transfer

Winter 2013: ME EN 340 Heat Transfer

Current Students and Alumni (link)

 

External Student Advisement:

Marc Dunham, Stanford University, 2012-2013

Scott Flueckiger, Purdue University, 2011-2012

Brian Ehrhart, University of Colorado at Boulder, 2010-2011

Google Scholar Profile

ORCiD ID

Journal Publications

  1. Cowley, A., Maynes, D., Crockett, J., and Iverson, B. D., 2017, "Bubble nucleation in superhydrophobic microchannels due to subcritical heating," submitted August 2017.
  2. Ding, S., Das, S., Brownlee, B., Parate, K., Davis, T., Stromberg, L., Katz, J., He, Q., Iverson, B., and Claussen, J., 2017, "CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening," submitted May 2017.
  3. Ghosh, A., Johnson, J. E., Nuss, J. G., Stark, B. A., Hawkins, A. R., Tolley, L. T., Iverson, B. D., Tolley, H. D., and Lee, M. L., 2017, "Extending the upper temperature range of microchip gas chromatography using a heater/clamp assembly," Journal of Chromatography A, Vol. 1517, pp. 134-141. DOI: 10.1016/j.chroma.2017.08.036
  4. Powell, K. M., Rashid, K., Ellingwood, K., Tuttle, J., and Iverson, B. D., 2017, "Hybrid concentrated solar thermal power systems: a review," Renewable and Sustainable Energy Reviews, Vol. 80, pp. 215-237. DOI: 10.1016/j.rser.2017.05.067
  5. Stevens, K., Crockett, J., Maynes, R. D., and Iverson, B., 2017, "Two-phase flow pressure drop in superhydrophobic channels," International Journal of Heat and Mass Transfer, Vol. 110, pp. 515-522. DOI: 10.1016/j.ijheatmasstransfer.2017.03.055
  6. Brownlee, B. J., Marr, K. M., Claussen, J. C., and Iverson, B. D., 2017, "Improving sensitivity of electrochemical sensors with convective transport in free-standing, carbon nanotube structures," Sensors and Actuators B: Chemical, Vol. 246, pp. 20-28. DOI: 10.1016/j.snb.2017.02.037
  7. Boyer, N., Pei, L., Rowley, J., Syme, D., Liddiard, S., Abbott, J., Larsen, K., Liang, R., Iverson, B., Vanfleet, R., and Davis, R., 2017, "Microfabrication with smooth thin carbon nanotube composite sheets," Materials Research Express, Vol. 4, pp. 035032. DOI: 10.1088/2053-1591/aa55a4
  8. Blanc, M. J., Mulford, R. B., Jones, M. R., and Iverson, B. D., 2016, "Infrared visualization of the cavity effect using origami-inspired surfaces," Journal of Heat Transfer, Vol. 138, pp. 020901. DOI: 10.1115/1.4032229
  9. Mulford, R. B., Jones, M. R., and Iverson, B. D., 2016, "Dynamic control of radiative surface properties with origami-inspired design," Journal of Heat Transfer, Vol. 138, pp. 032701. DOI: 10.1115/1.4031749
  10. Marr, K. M., Chen, B., Mootz, E. J., Geder, J., Pruessner, M., Melde, B. J., Vanfleet, R. R., Medintz, I. L., Iverson, B. D., and Claussen, J. C., 2015, "High aspect ratio carbon nanotube membranes decorated with Pt nanoparticle urchins for small scale underwater vehicle propulsion via H2O2 decomposition," ACS Nano, Vol. 9, pp. 7791-7803. DOI: 10.1021/acsnano.5b02124
  11. Iverson, B. D., Bauer, S. J., and Flueckiger, S. M., 2014, "Thermocline bed properties for deformation analysis," Journal of Solar Energy Engineering, Vol. 136, pp. 041002. DOI: 10.1115/1.4027287
  12. Dunham, M. T. and Iverson, B. D., 2014, "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Vol. 30, pp. 758-770. DOI: 10.1016/j.rser.2013.11.010
  13. Flueckiger, S. M., Iverson, B. D., and Garimella, S. V., 2014, "Economic optimization of a concentrating solar power plant with molten-salt thermocline storage," Journal of Solar Energy Engineering, Vol. 136, pp. 011016. DOI: 10.1115/1.4025516
  14. Ho, C. K. and Iverson, B. D., 2014, "Review of high-temperature central receiver designs for concentrating solar power," Renewable & Sustainable Energy Reviews, Vol. 29, pp. 835-846. DOI: 10.1016/j.ser.2013.08.099
  15. Flueckiger, S. M., Iverson, B. D., Garimella, S. V., and Pacheco, J. E., 2014, "System-level simulation of a solar power tower plant with thermocline thermal energy storage," Applied Energy, Vol. 113, pp. 86-96. DOI: 10.1016/j.apenergy.2013.07.004
  16. Iverson, B. D., Conboy, T. M., Pasch, J. J., and Kruizenga, A. M., 2013, "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Vol. 111, pp. 957-970. DOI: 10.1016/j.apenergy.2013.06.020
  17. Iverson, B. D., Broome, S. T., Kruizenga, A. M., and Cordaro, J. G., 2012, "Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase," Solar Energy, Vol. 86, pp. 2897-2911. DOI: 10.1016/j.solener.2012.03.011
  18. Iverson, B. D., Blendell, J. E., and Garimella, S. V., 2010, "Note: Thermal analog to atomic force microscopy force-displacement measurements for nanoscale interfacial contact resistance," Review of Scientific Instruments, Vol. 81. DOI: 10.1063/1.3361157
  19. Iverson, B. D., Cremaschi, L., and Garimella, S. V., 2009, "Effects of discrete-electrode configuration on traveling-wave electrohydrodynamic pumping," Microfluidics and Nanofluidics, Vol. 6, pp. 221-230. DOI: 101007/s10404-008-0317-1
  20. Iverson, B. D. and Garimella, S. V., 2009, "Experimental characterization of induction electrohydrodynamics for integrated microchannel pumping," Journal of Micromechanics and Microengineering, Vol. 19. DOI: 10.1088/0960-1317-19-5-055015
  21. Icoz, K., Iverson, B. D., and Savran, C., 2008, "Noise analysis and sensitivity enhancement in immunomagnetic nanomechanical biosensors," Applied Physics Letters, Vol. 93. DOI: 10.1063/1.2980036
  22. Iverson, B. D. and Garimella, S. V., 2008, "Recent advances in microscale pumping technologies: A review and evaluation," Microfluidics and Nanofluidics, Vol. 5, pp. 145-174. DOI: 10.1007/s10404-008-0266-8
  23. Iverson, B. D., Davis, T. W., Garimella, S. V., North, M. T., and Kang, S. S., 2007, "Heat and mass transport in heat pipe wick structures," Journal of Thermophysics and Heat Transfer, Vol. 21, pp. 392-404. DOI: 10.251414/1.25809
  24. Iverson, B. D., Maynes, D., and Webb, B. W., 2004, "Thermally developing electroosmotic convection in rectangular microchannels with vanishing Debye-layer thickness," Journal of Thermophysics and Heat Transfer, Vol. 18, pp. 486-493. DOI: 10.2514/1.3769

 

Books

  1. Iverson, B. D., and Garimella, S. V., Integrated Micropumping: Traveling-wave electrohydrodynamics induced in a temperature gradient, Saarbrücken, LAP Lambert Academic Publishing, 2010.

 

Conference Papers

  1. Cowley, A., Maynes, D., Crockett, J., and Iverson, B., 2017, "Sub-boiling nucleation in superhydrophobic microchannels," ASTFE Thermal and Fluid Engineering Conference, April 2-5, 2017, Las Vegas, NV.
  2. Blanc, M. J., Mulford, R. B., Jones, M. R., and Iverson, B. D., 2015, "Visualization of the cavity effect present for origami-inspired surfaces with IR imaging," Heat Transfer Gallery, ASTFE Thermal and Fluids Engineering Summer Conference, August 15-20, 2015, New York, NY. 
  3. Mulford, R. B., Jones, M. R., and Iverson, B. D., 2015, "Net radiative heat exchange of an origami-inspired, variable emissivity surface," ASTFE Thermal and Fluids Engineering Summer Conference, August 9-12, 2015, New York, NY.
  4. Mulford, R. B., Christensen, L. M., Jones, M. R., and Iverson, B. D., “Dynamic control of radiative surface properties with origami-inspired design,” ASME International Mechanical Engineering Congress and Exposition, Montreal, Canada, November 14-20, 2014.
  5. Flueckiger, S. M., Iverson, B. D., and Garimella, S. G., “Simulation of a concentrating solar power plant with molten-salt thermocline storage for optimized annual performance,” Energy Sustainability, Minneapolis, MN, July 14-19, 2013.
  6. Ho, C. K. and Iverson, B. D., 2012, "Review of central receiver designs for high-temperature power cycles," SolarPACES, September 11-14, 2012, Marrakech, Morocco.
  7. Iverson, B. D., Cordaro, J. G., and Kruizenga, A. M., 2011, "Thermal property testing of nitrate thermal storage salts in the solid-phase," ASME Energy Sustainability, August 7-10, 2011, Washington DC, USA.
  8. Iverson, B. D., Flueckiger, S. M., and Ehrhart, B. D., 2011, "Trough heat collection element deformation and solar intercept impact," SolarPACES, September 20-23, 2011, Granada, Spain.
  9. Andraka, C. E., Yellowhair, J., and Iverson, B. D., 2010, "A parametric study of the impact of various error contributions on the flux distribution of a solar dish concentrator," ASME Energy Sustainability, May 17-22, 2010, Phoenix, AZ, USA.
  10. Gary, J. A., Ho, C. K., Mancini, T. R., Kolb, G. J., Siegel, N. P., and Iverson, B. D., 2010, "Development of a power tower technology roadmap for DOE," SolarPACES, September 21-24, 2010, Perpignan, France.
  11. Iverson, B. D., Andraka, C. E., Yellowhair, J., and Ho, C. K., 2010, "Optical error impacts on flux distribution for a dish concentrator using probabilistic modeling," SolarPACES, September 21-24, 2010, Perpignan, France.
  12. Iverson, B. D., Broome, S. T., and Siegel, N. P., 2010, "Temperature dependent mechanical property testing of nitrate thermal storage salts," SolarPACES, September 21-24, 2010, Perpignan, France.
  13. Kolb, G. J., Ho, C., Iverson, B. D., Moss, T. A., and Siegel, N. P., 2010, "Freeze-thaw tests of trough receivers employing a molten salt working fluid," ASME Energy Sustainability, May 17-22, 2010, Phoenix, AZ.
  14. Iverson, B. D. and Garimella, S. V., 2008, "Performance characterization of a traveling-wave electrohydrodynamic micropump," ASME International Mechanical Engineering Congress and Exposition October 31 - November 6, 2008, Boston, MA, pp. 959-963.
  15. Cremaschi, L., Iverson, B. D., and Garimella, S. V., 2006, "Enhanced electrohydrodynamic pumping at the microscale," ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2006, Chicago, IL.
  16. Acikalin, T., Iverson, B. D., Garimella, S. V., Raman, A., and Petroski, J., 2004, "Numerical investigation of the flow and heat transfer due to a miniature piezoelectric fan," ASME International Mechanical Engineering Congress and Exposition November 13-19, 2004, Anaheim, CA, pp. 29-37.
  17. Iverson, B. D. and Garimella, S. V., 2004, "Experimental measurements of heat and mass transport in heat pipe wicks," ASME Heat Transfer/Fluids Engineering Summer Conference, July 11-15, 2004, Charlotte, NC, United states, pp. 209-217.

 

Brian Iverson utilizes heat transfer and thermodynamic principles to address needs related to power systems, sensing, thermal management and microfluidics.  His research begins at the nanometer scale with high-surface area to volume ratio structures that can be applied to industrial-sized components and bridge the gap between lab-scale devices and real-world applications.  Examples include:

  • High aspect ratio structures for control of heat and mass transfer
  • Enhanced convective transport
  • Microfabrication of sensors and actuators
  • Thermal energy storage
  • Absorptive surfaces for solar energy collection
  • Power systems for renewable energy


See more information at fluxlab.byu.edu

 

Carbon nanotube flow sensors for glucose detection and hydrogen peroxide splitting

 

Micro gas chromatography using thermal gradient control by exploiting nanoporous isolation layers

Very high aspect ratio micro and nano structures for heat and mass transfer enhancement

 

Origami-inspired thermal control mechanisms

 

Two-phase flows on superhydrophobic surfaces

 

Brian D. Iverson joined the faculty at Brigham Young University in 2012. His current interests include heat and mass transfer involving high aspect ratio structures for use in sensors, energy and thermal management applications.  Prior to his current position, he worked as a senior member of the technical staff at Sandia National Laboratories. While there his research included thermal storage integration in trough solar-thermal power plants, supercritical CO2 Brayton cycles for solar, thermocline energy storage, flux sensors for closed-loop tracking, among others. He has analyzed transport and interfacial phenomena in thermal, energy and bio-systems and worked as a post-doctoral researcher at Purdue University. He completed his PhD in 2008 while investigating integrated micropumping techniques for electronics cooling and biodevices as a part of the Cooling Technologies Research Center also at Purdue. His micropumping work includes actuation techniques such as induction-type electrohydrodynamics and electroosmotic pumping. He obtained an MS degree in 2004 while studying wick structure performance and properties in flat heat pipes. He is also a graduate of Brigham Young University (BS 2002).

Professional Experience

Assistant Professor

Brigham Young University, 2012-present

Senior Member of the Technical Staff 

Sandia National Laboratories, ABQ, NM, 2009-2012

Post-Doctoral Researcher, Purdue University

NSF Cooling Technologies Research Center, 2009

Visiting Researcher

Research Triangle Institute International, 2007

 

Education

Ph.D. Mechanical Engineering 

Purdue University, 2008

Topic: Traveling-Wave Electrohydrodynamic Micropumping in a Temperature Gradient

M.S. Mechanical Engineering 

Purdue University, 2004

​Topic: Heat and Mass Transport in Heat Pipe Wick Structures

B.S. Mechanical Engineering

Brigham Young University, 2002

Magna Cum Laude

 

LinkedIn Profile

Google Scholar Profile

ORCiD ID 

 

Winter 2016ME EN 643 Convective Heat Transfer

Fall/Winter 2017-18: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2018: ME EN 340 Heat Transfer

Spring 2017: ME EN 340 Heat Transfer

Winter 2017ME EN 540 Intermediate Heat Transfer

Fall/Winter 2016-17: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2016: ME EN 340 Heat Transfer

Spring 2016: ME EN 340 Heat Transfer

Winter 2016: ME EN 643 Convective Heat Transfer

Fall/Winter 2015-16: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2015: ME EN 340 Heat Transfer

Spring 2015: ME EN 340 Heat Transfer

Winter 2015: ME EN 540 Intermediate Heat Transfer

Fall/Winter 2014-15: ME EN 475/476 Integrated Product and Process Engineering (Coach)

Fall 2014: ME EN 340 Heat Transfer

Spring 2014: ME EN 340 Heat Transfer

Winter 2014: ME EN 643 Convective Heat Transfer

Fall 2013: ME EN 340 Heat Transfer

Winter 2013: ME EN 340 Heat Transfer

Current Students and Alumni (link)

 

External Student Advisement:

Marc Dunham, Stanford University, 2012-2013

Scott Flueckiger, Purdue University, 2011-2012

Brian Ehrhart, University of Colorado at Boulder, 2010-2011

Google Scholar Profile

ORCiD ID

Journal Publications

  1. Cowley, A., Maynes, D., Crockett, J., and Iverson, B. D., 2017, "Bubble nucleation in superhydrophobic microchannels due to subcritical heating," submitted August 2017.
  2. Ding, S., Das, S., Brownlee, B., Parate, K., Davis, T., Stromberg, L., Katz, J., He, Q., Iverson, B., and Claussen, J., 2017, "CIP2A immunosensor comprised of vertically-aligned carbon nanotube interdigitated electrodes towards point-of-care oral cancer screening," submitted May 2017.
  3. Ghosh, A., Johnson, J. E., Nuss, J. G., Stark, B. A., Hawkins, A. R., Tolley, L. T., Iverson, B. D., Tolley, H. D., and Lee, M. L., 2017, "Extending the upper temperature range of microchip gas chromatography using a heater/clamp assembly," Journal of Chromatography A, Vol. 1517, pp. 134-141. DOI: 10.1016/j.chroma.2017.08.036
  4. Powell, K. M., Rashid, K., Ellingwood, K., Tuttle, J., and Iverson, B. D., 2017, "Hybrid concentrated solar thermal power systems: a review," Renewable and Sustainable Energy Reviews, Vol. 80, pp. 215-237. DOI: 10.1016/j.rser.2017.05.067
  5. Stevens, K., Crockett, J., Maynes, R. D., and Iverson, B., 2017, "Two-phase flow pressure drop in superhydrophobic channels," International Journal of Heat and Mass Transfer, Vol. 110, pp. 515-522. DOI: 10.1016/j.ijheatmasstransfer.2017.03.055
  6. Brownlee, B. J., Marr, K. M., Claussen, J. C., and Iverson, B. D., 2017, "Improving sensitivity of electrochemical sensors with convective transport in free-standing, carbon nanotube structures," Sensors and Actuators B: Chemical, Vol. 246, pp. 20-28. DOI: 10.1016/j.snb.2017.02.037
  7. Boyer, N., Pei, L., Rowley, J., Syme, D., Liddiard, S., Abbott, J., Larsen, K., Liang, R., Iverson, B., Vanfleet, R., and Davis, R., 2017, "Microfabrication with smooth thin carbon nanotube composite sheets," Materials Research Express, Vol. 4, pp. 035032. DOI: 10.1088/2053-1591/aa55a4
  8. Blanc, M. J., Mulford, R. B., Jones, M. R., and Iverson, B. D., 2016, "Infrared visualization of the cavity effect using origami-inspired surfaces," Journal of Heat Transfer, Vol. 138, pp. 020901. DOI: 10.1115/1.4032229
  9. Mulford, R. B., Jones, M. R., and Iverson, B. D., 2016, "Dynamic control of radiative surface properties with origami-inspired design," Journal of Heat Transfer, Vol. 138, pp. 032701. DOI: 10.1115/1.4031749
  10. Marr, K. M., Chen, B., Mootz, E. J., Geder, J., Pruessner, M., Melde, B. J., Vanfleet, R. R., Medintz, I. L., Iverson, B. D., and Claussen, J. C., 2015, "High aspect ratio carbon nanotube membranes decorated with Pt nanoparticle urchins for small scale underwater vehicle propulsion via H2O2 decomposition," ACS Nano, Vol. 9, pp. 7791-7803. DOI: 10.1021/acsnano.5b02124
  11. Iverson, B. D., Bauer, S. J., and Flueckiger, S. M., 2014, "Thermocline bed properties for deformation analysis," Journal of Solar Energy Engineering, Vol. 136, pp. 041002. DOI: 10.1115/1.4027287
  12. Dunham, M. T. and Iverson, B. D., 2014, "High-efficiency thermodynamic power cycles for concentrated solar power systems," Renewable and Sustainable Energy Reviews, Vol. 30, pp. 758-770. DOI: 10.1016/j.rser.2013.11.010
  13. Flueckiger, S. M., Iverson, B. D., and Garimella, S. V., 2014, "Economic optimization of a concentrating solar power plant with molten-salt thermocline storage," Journal of Solar Energy Engineering, Vol. 136, pp. 011016. DOI: 10.1115/1.4025516
  14. Ho, C. K. and Iverson, B. D., 2014, "Review of high-temperature central receiver designs for concentrating solar power," Renewable & Sustainable Energy Reviews, Vol. 29, pp. 835-846. DOI: 10.1016/j.ser.2013.08.099
  15. Flueckiger, S. M., Iverson, B. D., Garimella, S. V., and Pacheco, J. E., 2014, "System-level simulation of a solar power tower plant with thermocline thermal energy storage," Applied Energy, Vol. 113, pp. 86-96. DOI: 10.1016/j.apenergy.2013.07.004
  16. Iverson, B. D., Conboy, T. M., Pasch, J. J., and Kruizenga, A. M., 2013, "Supercritical CO2 Brayton cycles for solar-thermal energy," Applied Energy, Vol. 111, pp. 957-970. DOI: 10.1016/j.apenergy.2013.06.020
  17. Iverson, B. D., Broome, S. T., Kruizenga, A. M., and Cordaro, J. G., 2012, "Thermal and mechanical properties of nitrate thermal storage salts in the solid-phase," Solar Energy, Vol. 86, pp. 2897-2911. DOI: 10.1016/j.solener.2012.03.011
  18. Iverson, B. D., Blendell, J. E., and Garimella, S. V., 2010, "Note: Thermal analog to atomic force microscopy force-displacement measurements for nanoscale interfacial contact resistance," Review of Scientific Instruments, Vol. 81. DOI: 10.1063/1.3361157
  19. Iverson, B. D., Cremaschi, L., and Garimella, S. V., 2009, "Effects of discrete-electrode configuration on traveling-wave electrohydrodynamic pumping," Microfluidics and Nanofluidics, Vol. 6, pp. 221-230. DOI: 101007/s10404-008-0317-1
  20. Iverson, B. D. and Garimella, S. V., 2009, "Experimental characterization of induction electrohydrodynamics for integrated microchannel pumping," Journal of Micromechanics and Microengineering, Vol. 19. DOI: 10.1088/0960-1317-19-5-055015
  21. Icoz, K., Iverson, B. D., and Savran, C., 2008, "Noise analysis and sensitivity enhancement in immunomagnetic nanomechanical biosensors," Applied Physics Letters, Vol. 93. DOI: 10.1063/1.2980036
  22. Iverson, B. D. and Garimella, S. V., 2008, "Recent advances in microscale pumping technologies: A review and evaluation," Microfluidics and Nanofluidics, Vol. 5, pp. 145-174. DOI: 10.1007/s10404-008-0266-8
  23. Iverson, B. D., Davis, T. W., Garimella, S. V., North, M. T., and Kang, S. S., 2007, "Heat and mass transport in heat pipe wick structures," Journal of Thermophysics and Heat Transfer, Vol. 21, pp. 392-404. DOI: 10.251414/1.25809
  24. Iverson, B. D., Maynes, D., and Webb, B. W., 2004, "Thermally developing electroosmotic convection in rectangular microchannels with vanishing Debye-layer thickness," Journal of Thermophysics and Heat Transfer, Vol. 18, pp. 486-493. DOI: 10.2514/1.3769

 

Books

  1. Iverson, B. D., and Garimella, S. V., Integrated Micropumping: Traveling-wave electrohydrodynamics induced in a temperature gradient, Saarbrücken, LAP Lambert Academic Publishing, 2010.

 

Conference Papers

  1. Cowley, A., Maynes, D., Crockett, J., and Iverson, B., 2017, "Sub-boiling nucleation in superhydrophobic microchannels," ASTFE Thermal and Fluid Engineering Conference, April 2-5, 2017, Las Vegas, NV.
  2. Blanc, M. J., Mulford, R. B., Jones, M. R., and Iverson, B. D., 2015, "Visualization of the cavity effect present for origami-inspired surfaces with IR imaging," Heat Transfer Gallery, ASTFE Thermal and Fluids Engineering Summer Conference, August 15-20, 2015, New York, NY. 
  3. Mulford, R. B., Jones, M. R., and Iverson, B. D., 2015, "Net radiative heat exchange of an origami-inspired, variable emissivity surface," ASTFE Thermal and Fluids Engineering Summer Conference, August 9-12, 2015, New York, NY.
  4. Mulford, R. B., Christensen, L. M., Jones, M. R., and Iverson, B. D., “Dynamic control of radiative surface properties with origami-inspired design,” ASME International Mechanical Engineering Congress and Exposition, Montreal, Canada, November 14-20, 2014.
  5. Flueckiger, S. M., Iverson, B. D., and Garimella, S. G., “Simulation of a concentrating solar power plant with molten-salt thermocline storage for optimized annual performance,” Energy Sustainability, Minneapolis, MN, July 14-19, 2013.
  6. Ho, C. K. and Iverson, B. D., 2012, "Review of central receiver designs for high-temperature power cycles," SolarPACES, September 11-14, 2012, Marrakech, Morocco.
  7. Iverson, B. D., Cordaro, J. G., and Kruizenga, A. M., 2011, "Thermal property testing of nitrate thermal storage salts in the solid-phase," ASME Energy Sustainability, August 7-10, 2011, Washington DC, USA.
  8. Iverson, B. D., Flueckiger, S. M., and Ehrhart, B. D., 2011, "Trough heat collection element deformation and solar intercept impact," SolarPACES, September 20-23, 2011, Granada, Spain.
  9. Andraka, C. E., Yellowhair, J., and Iverson, B. D., 2010, "A parametric study of the impact of various error contributions on the flux distribution of a solar dish concentrator," ASME Energy Sustainability, May 17-22, 2010, Phoenix, AZ, USA.
  10. Gary, J. A., Ho, C. K., Mancini, T. R., Kolb, G. J., Siegel, N. P., and Iverson, B. D., 2010, "Development of a power tower technology roadmap for DOE," SolarPACES, September 21-24, 2010, Perpignan, France.
  11. Iverson, B. D., Andraka, C. E., Yellowhair, J., and Ho, C. K., 2010, "Optical error impacts on flux distribution for a dish concentrator using probabilistic modeling," SolarPACES, September 21-24, 2010, Perpignan, France.
  12. Iverson, B. D., Broome, S. T., and Siegel, N. P., 2010, "Temperature dependent mechanical property testing of nitrate thermal storage salts," SolarPACES, September 21-24, 2010, Perpignan, France.
  13. Kolb, G. J., Ho, C., Iverson, B. D., Moss, T. A., and Siegel, N. P., 2010, "Freeze-thaw tests of trough receivers employing a molten salt working fluid," ASME Energy Sustainability, May 17-22, 2010, Phoenix, AZ.
  14. Iverson, B. D. and Garimella, S. V., 2008, "Performance characterization of a traveling-wave electrohydrodynamic micropump," ASME International Mechanical Engineering Congress and Exposition October 31 - November 6, 2008, Boston, MA, pp. 959-963.
  15. Cremaschi, L., Iverson, B. D., and Garimella, S. V., 2006, "Enhanced electrohydrodynamic pumping at the microscale," ASME International Mechanical Engineering Congress and Exposition, November 5-10, 2006, Chicago, IL.
  16. Acikalin, T., Iverson, B. D., Garimella, S. V., Raman, A., and Petroski, J., 2004, "Numerical investigation of the flow and heat transfer due to a miniature piezoelectric fan," ASME International Mechanical Engineering Congress and Exposition November 13-19, 2004, Anaheim, CA, pp. 29-37.
  17. Iverson, B. D. and Garimella, S. V., 2004, "Experimental measurements of heat and mass transport in heat pipe wicks," ASME Heat Transfer/Fluids Engineering Summer Conference, July 11-15, 2004, Charlotte, NC, United states, pp. 209-217.

 

Brian Iverson utilizes heat transfer and thermodynamic principles to address needs related to power systems, sensing, thermal management and microfluidics.  His research begins at the nanometer scale with high-surface area to volume ratio structures that can be applied to industrial-sized components and bridge the gap between lab-scale devices and real-world applications.  Examples include:

  • High aspect ratio structures for control of heat and mass transfer
  • Enhanced convective transport
  • Microfabrication of sensors and actuators
  • Thermal energy storage
  • Absorptive surfaces for solar energy collection
  • Power systems for renewable energy


See more information at fluxlab.byu.edu

 

Carbon nanotube flow sensors for glucose detection and hydrogen peroxide splitting

 

Micro gas chromatography using thermal gradient control by exploiting nanoporous isolation layers

Very high aspect ratio micro and nano structures for heat and mass transfer enhancement

 

Origami-inspired thermal control mechanisms

 

Two-phase flows on superhydrophobic surfaces